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Hybrid multifunctional bioinks for 3D printed 
disease models

3D printing and nanotechnology have emerged as promising tools that contribute to advancing
biomedical research, including the fabrication of complex in vitro tissue models [1,2]. Organic-
inorganic hybrid materials, composed of different polymers or hydrogel compositions that
include inorganic nanoparticles (NPs) and living cells are commonly used in nanomedicine and
can potentially be used to produce composite smart bioinks for 3D-printed models [3,4].

ABSTRACT RESULTS
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We developed multilayer systems,
comprising a combination of smart
polymers containing nanoparticles –
adding stimuli-responsive functionality to
the materials – and cell-containing living
bioinks, to obtain an extensive library of
polymer-based inks. The ultimate aim is
using such inks for the fabrication of
realistic tissue models by 3D printing, for
the understanding of disease
mechanisms, pathology and biochemical
pathways, as well as for therapy, drug
identification, testing and screening.

Thermal, structural, optical and rheological characterization methods were employed to select
the ideal material for representing the real configuration and function of arteries. The results
obtained so far suggest the suitability of using 3D printing for the generation of 3D cancer
models based on smart-hybrid living bioinks.

CONCLUSIONS

Bioinks for the different layers of the disease model

1. 3D printing technology→ 🗸 fabrication of realistic disease models

- Polymers with nanoparticles as stimuli generators + cell containing biopolymers

2. Biocompatible inks→ viable environment up to at least 14 DIV

3. AuNRs→ plasmon λ=776 nm + capable to heat 17°C (from RT up to 39°C)

4. Highly porous structures in printed thermoresponsive layer + living layer → facilitate
diffusion of oxygen and nutrients

5. The materials present appropriate rheological properties for printing

Figure 1. A hydrogel (10% GelMA, 1% Alginate) containing MCF7 breast cancer cells pre-stained
with OsO4 (1) was 3D-printed into a cylindrical shape. Cells remained viable post printing (2)
and, in the case of stromal cells such as fibroblasts, cell spreading was observed, highlighting
the biocompatible nature of the bioink (3).
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Figure 4. Rheological characterization of stimuli-responsive and cell containing bioinks,
including flow and viscosity curves showing a shear-thinning response (1,2), amplitude sweeps
with G’ and G’’ measured in oscillatory shear showing the linear viscoelastic regions (LVE) of
the viscoelastic solids (G’>G’’) (3), and a creep study replicating the printing process, i.e.
presenting the recovery time of the structure after a 3-step stress test (10Pa – 100Pa -10Pa).

Figure 2. AuNRs were characterised using UV-Vis spectroscopy (1), thermal response (2) and
TEM (3, 4). Thanks to the LSPR situated at 780nm, AuNRs produced heat upon irradiation with
an 808 nm laser. When irradiated with a power density of 660 mW/cm2, an increase in
temperature of 17°C was recorded.

Figure 3. Structural characterization by SEM imaging of 3D-printed NIPAm-PEGDA based
stimuli-responsive film after removal of the sacrificial material (1,2) and the cell containing
layer composed of 5% GelMA – 1% alginate gel (3,4). Uniform porosity is observed.
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OBJECTIVES

Overall objective → fabrication of a library of hybrid smart bioinks, for the

generation of a variety of disease models through 3D printing technology.

Specific goals are the:

• Synthesis and surface functionalization of inorganic nanoparticle systems

• Design of polymer compositions to produce printable hybrid smart inks

• Design of living bioinks

• Thermal, structural, optical and rheological characterization of the inks

• Fabrication and validation of the 3D disease models
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